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O F  R E C A P T U R E  SAMPLING MODELS 
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Department of Mathematics and Statistics 

Old Dominion University 
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ABSTRACT 

In the context of a recapture sampling design for debugging experiments we 

consider the problem of estimating the error or hitting rate of the faults remaining 

in a system. Moment estimators are derived for a family of models in which the 

rate parameters are assumed proportional to the tail probabilities of a discrete 

distribution on the positive integers. The estimators are shown to be asymptotically 

normal and fully efficient. Their fixed sample properties are compared, through 

simulation, with those of the conditional maximum likelihood estimators. 

Key words and phrases: software reliability; asymptotic eficienc y ;  conditional 

likelihood; average information; interval truncated sampling. 
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1. INTRODUCTION 

Nayak (1988) recently proposed a recapture sampling design for estimating 

the number of errors or faults remaining in a system. As is common in debugging 

experiments, a system is tested for a time period of length 7 ,  the failure (i.e., error 

detection) times Tl,T2,. . . , T, are observed, and repair takes place immediately 

after a fault produces an error. By using standard error detection techniques (e.g., 

Avizienis and Chen, 1977) the hitting frequency M; = M;(T;, 7 )  of the fault detected 

at time T; is observed as the number of times the region (i.e., path in software) 

containing the fault is accessed during the interval (Ti, 7 ) .  Nayak’s (1988) discussion 

concerns the Jelinski-Moranda (1972) model A i  = (v-i+l)r$, 4 > 0, i = 1,2,. . . , v 
where v, a parameter, is the initial number of faults in a system. 

The purpose of the present paper is to study estimation procedures related to 

the following model. The spacings yi = T; - Ti-1 (To = 0), i = 1,2,. . . are assumed 

independent and exponentially distributed with rate parameters A; given by 

A; = a! q i  - l,+), CY > 0, E; = a! g( i , f$ )  (1) 

That is, A; is the rate of encountering the remaining faults after i - 1 faults have 

been removed and [; = A; - X;+l are the hitting rates of the first, second, etc., 

detected faults. In (l), G(z,t$) = 1 - G(z,$), is the distribution function of a 

discrete positive random variable and g(z, 4) is the density function or probability 

mass function of G(z,$). The quantity ti can be interpreted as the amount by 

which A i  decreases when repairing the fault detected at time Ti. Counts {M;( t ) }  

of repeated error occurrences are assumed to be independent homogeneous Poisson 

processes with rate parameters &. 
In this context the J-M model is given by a discrete uniform distribution with 

mass at 1,2,. . . ,v. This model, however, assumes that faults have a common 

rate e; = 4 whereas experimental investigations (e.g., Nagel, Scholz, and Skrivan, 
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1984) indicate that faults may have different hitting rates. The log linear rate 

model A; = cxe-P(;-l) (Cox and Lewis 1966) corresponds to a geometric distribution 

and describes the case €1 > €2 > ... in which faults having the highest hitting 

rates are detected early in the debugging process. Other models that seem to 

be related to (1) are those of Sandland and Cormack (1984) and Miller (1986). 

For our purpose it suffices to take g ( i , t $ )  to be the discrete exponential family of 

densities g ( i , t $ )  = exp[a;t$ - $(t$) + ai]. These models yield a sufficient statistic of 

smaller dimension than obtained in general, although for most families the likelihood 

function (Section 2) does not have exponential family structure. 

The main problem we consider is that of estimating the error (or hitting) rate 

A r + l  for a system in its final state; i.e., a system for which R = r faults have been 

removed. Moment estimators of (a,t$) are presented in Section 3. Their bias and 

asymptotic variances are compared with those of the maximum likelihood estimators 

in Section 4. In Section 3 we show that functions of the form r-1/2 ln(&+l/Ar+i) 

have a limiting (r  + 00) normal distribution under various models. The conditional 

likelihood function given in Section 2 defines the setting of our discussion. 

2 .  A CONDITIONAL LIKELIHOOD 

We assume that a system is tested until no errors are detected for a time 

period of length s. Data is obtained through interval truncated sampling by which 

we observe Tl,Tz,. . . ,TR and R = t providing Y; 2 s , i  = 1,2,. . . , r and Yr+l > s. 
With Y1, Y2,. . ., being independent exponential random variables, the condi- 

tional density of Y1, Y2,. . . , YR given R = r ,  is 
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The total test time 7 = 

is a fixed quantity. 

yi + s is random while in Nayak's (1988) discussion, T 

The full data vector can be represented in terms of the vector quantities zk 

defined by 

Here k f i k , i  < k, is the number of times the system encounters the ith detected 

fault during the interval (Tk-l,Tk]. The last interval (Tr,7] has fixed length s while 

the remaining intervals ( T k - 1 ,  Tk], k 5 r ,  have random length Y k .  For notational 

convenience, we let Yt+l = s .  

Our earlier assumption that {Mi ( t ) }  are independent homogeneous Poisson 

processes together with Y1, Y2,. . . , Y,. being independent implies that Z 1 , Z 2 , .  . ., 
Zt+l  are conditionally, given R = r ,  independent with densities 

Substituting A i  = aG(i - 1,4) and ti = ag(i,4) in (4), the log likelihood is 

I ,  = xi+' Ik where 

Here Yt+l = s ,  C does not depend upon (a,4), and 

ck(a,4) = ln[Xk(l - k = 1,2, .  . . , r  

= Xr+ls, k = r + 1 
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Let vk = ( V l k ,  V 2 k ,  V 3 k ) ,  k = 1 ,2 , .  . . , r + 1 (prime denotes vector transpose) be 

defined by 
k-1 k- 1 

i=l i= 1 

where a; are constants. 

The following moments are needed to obtain the average information matrix 

and also in Section 3, to study the asymptotic distribution of S, = E;=, v k .  

These moments can be obtained by noting that Y k  has an exponential distri- 

bution truncated over the interval (0,s) and that {&} are conditionally, given 

Yk, independent Poisson random variable with means & Y k .  Since V 3 k  is a h e a r  

function of & , z  < k, these moment are similar to those given in [3]. 

By taking derivatives and expectations, the Fisher information matrix A k  = 

( a i j k ) ,  based on f k ,  can be obtained as follows: 
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Since Yk converges (as k + 00 ) in distribution to a uniform distribution on the 

interval (0,s) the moments of Yk converge to the corresponding moments of the 

limiting uniform distribution (Serfling, 1980, p.14 ). We thus have limplk = s/2, 

limallk = s2/12, and lim Xk = 0 as k + 00 Assuming that g(i, 4) is a regular family 

with support not depending upon 4, the limits 7; = lim7ik, i = 1,2 are given by 

where 7 2  is the Fisher information about the parameter 4 based on a single ob- 

servation from g(i,4). Thus 71 = 0 and the limiting average information matrix 

A = lim(l/t)(Al + A2 + . . . + Ar+1) is A = (a i j )  where all = s/2, a12 = 0, and 

a 2 2  = a72s/2. 

3.  ESTIMATION 

We now consider exponential family rate models given by 

f i  = aexp[b ( i )  - $($) + b( i ) ] , i  = 1,2, .  . . . (7) 

where q5 varies over the natural parameter set {q5 : xi"=, exp(c$a(i) + b ( i ) ]  < 00). 

This family includes the Poisson (ti = afli-lc8/(i - l ) ! ,O > 0 , i  = 1,2, .  . . .) and 

log linear model as well as other models. 

Let v k  be defined as in (6) where ai is the coefficient of 4 in (7). In reference 

to I ,  = XI;" Lk defined by ( 5 ) ,  we have the following: 

(i) VI, Vz, . . . , Vr+l are independent. 

(ii) Sr = E);+' v k  is a sufficient statistic for the family defined by 1,. 

(iii) S: = (Slr ,S2r,S3r) is given by SI, = 7, S2r = C ) ; M ; ,  S3r = ajM; 
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THEOREM 2. Under (7) where a; 2 0 is nondecreasing in i = 1,2,. . ., (l/r)Sr has 

a limiting (as r + 00) normal distribution with mean vector p’ = ( p l , p Z , p g )  and 

covariance matrix ( l / r )C given by 

p1 = s/2 p2 = a 4 2  p3 = as$’ 

c11 = 2 / 1 2  ~ 1 2  = as2/12 ~ 1 3  = ( ~ ~ 2 / 1 2 ) + ’  

~ 2 2  = C Y S / ~  + a2s2/12 ~ 2 3  = ~ 2 2 t , V  ~ 3 3  = (cYs/~)$” + ~ 2 2 ( $ ‘ ) ~  

The proof is given in Section 5.  

Note that a =  $7l(Pl,P2,P3) and 9’(4) = $72(p1,C12,C13) where 91(21,22,23) = 

22/21, 92(21,22,23) = 23/22 ,  Applying the &method, the estimates (&, 4) given by 
r r t 

i= 1 i= 1 i= 1 

have a limiting normal distribution with mean vector (a, 4), and are asymptotically 

independent with variances u~~ = 2a/rs , ai2 = 2[ras$”(4)]-’. 

In estimating X r + l  by i r + 1  = & G ( r ; J )  we must account for the fact that 

r increases as r1/2(& - a) and r1l2(J - 4) converge to their limiting distribu- 

tions. For the log linear rate model X i  = ae-fl(i-l) with 4 = -p,p > 0, we have 

~-1 /2  ln(ir+ 1 / A r +  1) = r1/2( 4 - 4) so that by Theorem 2, r-lj2 ln(&+i/Ar+1) has a 

limiting ( r  + 00) normal distribution with mean zero and variance 2[as$~”(4)]-’ = 

2e4(e-4 - I ) ~ ( C Y S ) - ~ .  

To deal with the other models in Table 1, we apply Taylor’s formula to H ( 4 )  = 

- In G(r;  4) and obtain 

where I+* - $1 < 14 - 41. The first term of (8) converges in probability to zero. 

Under the Poisson and logarithmic series models, r-11H’(q5*)l converges to 1, and 
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r-3/2H"(4*) converges in probability to zero. Thus for all of the models of Table 

1, the limiting distribution of r - l i 2  ln(Xr+l/Xr+l)is identical to that of r1I2(4 - 6) 
and is a normal distribution with mean zero and variance 2[a!s$~"(4))-~. 

4. EFFICIENCY AND BIAS 

Since = 2a!/(rs) and 0 4 ~  = 2[ra!s9!J"(4)]-' where 9!J"(4) = 7 2  is defined at 

the end of Section 2, it follows that ti and 6 are asymptotically fully efficient. 

To study the fixed sample properties of ti and 6,  we simulated their values for 

the Poisson rate model under the conditional likelihood defined in (6). Th' 1s was 

done by generating 200 replicates of (2'1,2'2,. . . , 2'7, M I ,  M2,. . . , Mr) for the values 

of r shown in Table 2. In addition the conditional maximum likelihood estimates 

bC and 4, were calculated for each replicate by maximizing 1, = E';" lk where lk 

is defined in (5) . 

r 18, " 
a! 4 

15 Bias 
MSE 

20 Bias 
MSE 

25 Bias 
MSE 

30 Bias 
MSE 

- .012464 
.OOO 155 

-.010878 
.OOOO18 

.000074 

.000050 

-.008613 

-.007036 

.020852 

.0004 35 

.004578 

.000021 
-.028581 
BO08 17 
.012544 
.OOO 157 

- .001241 
.000001 

-.002542 
.000006 

- .OO 1379 
.000002 

-.001484 
.000002 

-.050126 
.002512 

-.025457 
.000648 

-.046221 
.002136 
.022037 
.0004 8 5 

Table 2. Bias and mean square error (MSE) of the conditional maximum likelihood 
estimators &, and 6, and moment estimators & and 4 based on 200 simulations 
with a! = .10 and 

Table 2 shows the bias and mean square error (MSE) for & and 6 and also the 

bias and MSE for 6, and 4,. Although the conditional MLE 4, has smaller bias 

than 4, the moment estimator & seems to generally have smaller bias than 6,. 

= -2.00. 
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5 .  PROOF OF THEOREM 2 

To prove Theorem 2, note that the elements of p and C are given by p; = 

lim(l/r) xk=l p;k, i = 1,2,3 and C i j  = lim(l/t) E;:', a i j k  as r tends to infinity, 

where the terms in these sums are the moments given in Theorem 1. Since p;k 

and a i j k  converge to finite limits as k tends to infinity, we have p; = 1imp;k and 

c;, = limaijk. Thus the calculations are similar to those discussed at the end of 

Section 2. The remainder of the proof requires showing (Serfling, 1980, p.30) that 

r + l  

r+l 

k= 1 

where 

hkr = E[UkI(Uk > € 2 4 1  
3 

a= 1 

and I(.) is the indicator function. Since hkr 5 (c2r)-'E(U;), the limit in (9) can 

be established by examining the fourth moments of the Q k , i  = 1,2,3. 

To obtain bounds for these moments, we replace zk by 

where Nk = ctzt M;k and X j k  takes the value X j k  = i if the j t h  event occurring 

in the interval (Tk-1,Tk) corresponds to the occurrence of the ith detected fault, 

i = 1,2,. . . , k - 1. Given that Nk = n, X l k ,  X 2 k , .  . . ,Xnk are i.i.d with truncated 

density g ( i  ; 4) /G(k  - 1 ; d), i = 1,2, . . . , k - 1. 

In terms of Zi ,  the vectors Vk defined in (6) can be written 
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where u ( i )  = a;. 

Since the distribution of Nk is conditionally, given Y k ,  Poisson with mean 

(XI - &)Yk  and since Y k  I s ,  it follows that Nk is stochastically smaller than the 

Poisson random variable N that has mean X l s  = as. Thus for any positive integer 

p we have E ( Y [ )  5 sp and E(Nkp)  5 E ( N p )  < 00. 
For any nonnegative quantities w1, wq, . . . , wn and positive integer p we have 

n n 

i= 1 i= 1 

By applying (12) to the form of V3k given in ( l l ) ,  we obtain 

j =  1 

where N has a Poisson distribution with mean as and X has the density g(i;q5).  

All positive moments of a(%) exist for the family of densities in (7). In summary 

we have E(VA) 5 Bi, where Bip, i = 1,2,3 do not depend on k. 
To complete the proof of Theorem 2, we again use (12) to obtain u k 2  5 9 cy=l 

(Vik - ~ i k ) ~ .  Since (Kk - &k)4 5 (Kk + p ; k ) 4 ,  the binomial expansion can be used 

to show that E(Uz)  5 B where B is finite and does not depend on k. Thus the 

limit in (9) is zero, which proves Theorem 2. 

6 .  FINAL REMARKS 

Software testing counters (Huang, 1977) will tend to over count the number of 

times a fault produces an error in the output. An alternative method, which will 
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accurately give the fault hitting frequencies, has been described in the literature on 

multiversion programming (Avizienis and chen, 1977). To describe this method in 

the context of error recapture experiments, let PI, P2,. . . denote successive versions 

of the original program PO, where Pi is the result of correcting the fault detected in 

Pi-1 at time Ti. A copy of Pi-1 is made before correcting this fault and all of the 

versions (Po, PI,. . . , Pi) are run on the same input series during the interval (Ti, 7 ) .  

To determine the hitting frequency of the fault detected at time Ti, the outputs of 

Pi-l are compared with those of Pi. Any difference in the outputs is due to the 

fault that resides in Pi-l which has been corrected in Pi. Similarly, comparing the 

outputs of all pairs (P;- l ,Pi) ,  i = 1,2, .  . . , r  will yield the total set of fault hitting 

frequencies. 
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Model Estimator 
Variance 

Poisson, 
r 

a > 0,  -00 < 4 < 00, +(4) = e@ r r 

e+ 6 = l n ( x ( i  - 1)M;/ Mi) 
= a l  u'-le-"du/(r - l ) !  i= 1 a= 1 

Geometric, r 

i= 1 
2a( r s) - ' 

Logarithmic Series, 

r 

& = M;/T 
i=l  

Table 1. Moment estimators of (a,4) for the Poisson, Geometric and Logarithmic series rate 

models. 
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